NiftyRec 1.6
Software Guide

June 28, 2012

Stefano Pedemonte

Alexandre Bousse
Marc Modat

Sebastien Ourselin

@Cmic

Centre for Medical Image Computing

Contents

1 Introduction 2
1.1 OVerview. o e e 2
1.2 FeatureList 2
1.3 Algorithms for Emission Tomography 3

1.3.1 Projection and Backprojection 3
1.3.2 GPUacceleration 6
1.3.3 Reconstruction Algorithms 10
1.4 Algorithms for Transmission Tomography 12
1.4.1 Projection 12

2 Developer's Guide 15

21 Getting Started 15
211 CompilewithCMake 15

2.2 Software Overview 17
2.2.1 DirectoryTree. o 17
2.2.2 Programming Guidelines 18

2.3 Programming Interfaces L. 19
2.3.1 Niftilnterface 19
232 CArraylInterface 19
233 Matlab 20
234 Python. 20

3 User's Guide 23

3.1 GettingStarted 23
3.1.1 Install Packaged Releases 23
3.2 Matlab Toolbox 24
3.2.1 Transmission Tomography 24
3.3 Python Extension Module 25
34 CAPI . . e 25
3.4.1 Transmission Tomography 25

Chapter 1

Introduction

1.1 Overview

NiftyRec provides routines for Emission and Transmission Toographic re-
construction. The software is written in C and computationdly intensive
functions have a GPU accelerated version based on NVidia CUDA. NiRec
includes a mex-based Matlab Toolbox and a Python module tharovide easy
to the low level routines for reconstruction, hiding the comlexity of C and
of the GPU accelerated algorithms, while maintaining the i speed. Fast
projection and backprojection with depth-dependent colthator and detector
response and attenuation correction are at the core of Niftyd®. NiftyRec
has been designed for performance, ease of use, modulagtgessibility of
the code and portability.

1.2 Feature List

Projector and Backprojector
Depth-dependent Point Spread Function (DDPSF)
Attenuation correction
Rotation based ray-tracing
FFT based convolution
GPU acceleration
Reconstruction algorithms

Maximum Likelihood Expectation Maximization (MLEM)

2

Ordered Subsets Exectation Maximization (OSEM)

One-step-late Maximum a-posteriori Expectation Maximizéon (OSL-
MAPEM)

Gradient ascent Maximum Likelihood and Maximum a-posterio
Priors

Total variation

Joint Entropy based anatomical prior
Scatter Correction

Reconstruction Based Scatter Correction (RBSC)
Bindings

Matlab

Python
Miscellaneous functions

Generate 3D synthetic phantoms

Load and write DICOM and NIFTY les

GPU accelerated 3D a ne transformation

1.3 Algorithms for Emission Tomography

1.3.1 Projection and Backprojection

Iterative reconstruction methods based on a stochastic meldof the emission
process [1, 2, 3] have been widely shown to provide better iggaquality
than analytic reconstruction [4, 5]. The reason for the immvement in image
guality is that photon count statistics are taken in accountin the model of
the imaging system; furthermore stochastic methods faddie the inclusion
of complex system models that take into account detailed dwhator and
detector response (CDR).

The CDR, including collimator geometry, septal penetratio and detector
response, may be taken into account in a stochastic reconsttion algorithm
in the form of a Point Spread Function (PSF) that modulates tle response
of an ideal Gamma Camera [6][7].

The computational complexity associated with stochasticaconstruction meth-
ods however still limits their application for clinical useand inclusion of com-
plex system models further increases the computational damd. Projection
and backprojection constitute the most burdensome part of @econstruction
algorithm in terms of computational resources and memory dnare per-
formed recursively at each iteration step.

E cient computation of line integrals for projection and backprojection
by ray-tracing was proposed by Siddon [8]. However with a rdyased ap-
proach it becomes ine cient to include a depth-dependent P§ as this re-
quires the casting of a number of rays within daube of responsefor PET
[9] and acone of responsdor SPECT [6]. Furthermore, though there exist
GPGPU accelerated implementations [10], ray-based projecs cannot fully
exploit Single Instruction Multiple Data (SIMD) architectures such as GPG-
PUs because of sparsity of data representation and low arithatic intensity
due to independence of the rays.

NiftyRec is based on an implementation of the rotation-basegrojec-
tion and backprojection algorithm proposed by Zeng and Guderg [6]. This
algorithm drastically reduces memory requirements and allvs to perform
convolution with the PSF in the frequency domain inO(N logN) by means
of Fast Fourier Transform.

Rotation-based projection and backprojection are partidarly well suited to

GPGPU acceleration because reorganization of the data ineoregular grid

yields e cient use of the sharedmemory and of the global memory bandwidth
provided by the GPU architecture. Moreover the algorithm t&es advantage
of the hardware based trilinear re-sampling, o ered by the BU's 3-D tex-

ture memory fetch units.

Figure 1.1: Rotation-based projection: the activity is resampled on a regular
grid aligned with a camera and then projected. This enablesF¥ based
convolution with the (depth-dependent) collimator-detetor response.

Let the radio-pharmaceutical activity within the region ofinterest of the

4

patient's body be a continuous function denoted by.~In order to readily
discretize the reconstruction algorithm, it is conveniento imagine that the
activity is in rst place discrete in space [1]. Let us approxnate y- by a set
of point sourcesy = yp; b=1;::; N, displaced on a regular grid.

As each point source emits radiation at an average rayg proportional to the
local density of radio-tracer and emission events in a samexel are not time
correlated, the number of emissions in the unit time is a Paen distribution
of expected valuey,. The geometry of the system and attenuation in the
patient determine the probability p,q that a photon emitted in b is detected
at detector pixel d. From the sum property of the Poissog, distribution, the
photon count in d has Poissonpdf with expected value | podys. Given
activity y, the probability to observe countsz is

Ya o X
p(ziy)= P(Podyb; Za) (1.1)
d=1 b
Amongst all the activity con gurations that might have geneiated the ob-
served photons, the activity that maximizes thdikelihood function is optimal
in the sense of the L2 norm of the di erence from the true valydor the log
linear distribution p(zjy) [11].

¢ = argmax p(zjy) = argmax logp(zjy) (1.2)
y y
Expanding log p(zjy):
|
Xa X X '
¢ = arg max Podyb + Z410g Podys (1.3)
y d=1 b b

A gradient-based optimization algorithm, such as gradienascent, requires
the gradient of the likelihood function with respect of the ativity in each
point source, di erentiating the log of 1.1:

@ogp(zjy). X X Z4 :
= = |-y = =+ p - 14
@y by=y 1 Pod 4ot Pod oo Pred ybOJy Y (1.4)

P P
w Pwa Yio is referred to as projector, and pudf ¢ @s backprojector off 4.

Similarly the Expectation Maximization algorithm for maximization of the
likelihood (MLEM) implies projection and backprojection [1]:

. 1 X z
e gt oo B s
dPod o P Vi

In case of ideal CDR, with a parallel hole collimator, the syem matrix ppq
is non-zero only along lines perpendicular to the collimat@ntry surface and
the projection is a line integral operator. A more detailedystem model ac-
counts for the sensitivity of each detector pixel to radiatn emissions from
each voxel. With a planar detector, coupled to a parallel he|] cone beam or
fan beam collimator, the sensitivity is invariant to shift dong the detector
plane. With shift invariant CDR, projection is factorisable into a line integral
operator and a convolution operator [6]. The CDR is generglldependent
upon the distance from the detector plane.

The rotation-based projection and backprojection algoritm proposed by
Zeng and Gullberg [6] was adopted as it suits the GPU architerce and is
convenient to be incorporated with depth-dependent respea functions. For
each position of the gamma camera, the image matrix volume ristated so
that the front face of the volume faces the detection plane -ifure 1.1. As
the image is re-interpolated on a grid that is aligned with tlk detection plane,
all the point sources that lay on a same plane parallel to theetiector are
now at the same distance from the detector. A depth-dependeRSF that
models the CDR can be incorporated e ciently by convolving ach parallel
plane with the PSF that models the relative to the distance ahe plane from
the collimator. The convolution can be performed by multiptation in the
frequency domain, reducing the complexity fron©(N?) to O(N logN).
Backprojection similarly takes advantage of rotation to isorporate the depth
dependent PSF. Details of the implementation of the projeot and backpro-
jector are given in the next section.

1.3.2 GPU acceleration

GPU
SHARED
e MEMORY

15GB/s SYNC

15GB/s 8GB/s 140 GB/s
HOST NORTH GPU MURLTI
DRAM BRIDGE DRAM PROCESSORS

Figure 1.2: Memory structure of the host machine and GPU andypical
memory bandwidth.

For problems that present enough task parallelism, state tiie art GPUs
can provide an acceleration of up to 10x over a high end CPU, hever the

6

speedup can increase by another order of magnitude if thestture of the al-
gorithm allows for e cient use of the shared memoryof the GPU [12, 13, 14].
While on CPUs the cache hierarchy compensates costly accesseexternal
RAM and cache heuristics account for a large class of computatal prob-
lems, the simpli ed memory hierarchy of GPUs requires careffdesign of the
algorithms for e cient memory access. The external memorysidirectly ex-
posed to the programmer, who has to consider explicitly casced access due
to the mismatch between data rate and cycle time of the DDR meony. On
the other hand the simpler structure of the memory and vicity of the RAM
to the processor yield data throughput 10 times higher thanhie throughput
between CPU and RAM - Figure 1.2.

The fast RAM memory of the GPUs explains the 10 speedup, however
the Single Instruction Multiple Data (SIMD) architecture and the shared
memory of the GPU provide additional speedup for a class of compuianal
problems. In the SIMD architecture, many processor cores on the same
chip due to simpli ed design of the processor cores, whicheagrouped, in the
case of NVidia GPUs, in amultiprocessor with a single common fetch unit.
Multiple cores can operate concurrently in anultiprocessor if they execute
the same instruction, so if the computational problem is sicthat the same
operation is performed on multiple segments of data, the GPdan use a
great number of processors at the same time. As the RAM data thughput
would still be too low to continuously feed data to all the cags, the processor
cores that are grouped in anultiprocessor have access to an on-chip mem-
ory that can be read and written concurrently by all the coresn a single
clock cycle, through multiple data paths. The size of thehared memoryis
limited to a few Kbytes on currently available GPUs. This degjn o ers the
possibility to exploit the full power of the cores as long ashe cores in a
multiprocessor can reuse the data that resides in thghared memory hiding
accesses to the global memory, that is hundreds of times séowIn order to
take full advantage of the GPU architecture, a computationigproblem needs
to expose parallel tasks that run on each multiprocessor, @atask being
partition-able into serial tasks that use limited memory (p to a few Kbytes)
and present a high ratio between the number of operations anlde accesses
to memory.

Another feature o ered by Nvidia GPUs is hardware trilinear inerpola-
tion. A portion of memory may be specied as a 1D, 2D or 3D arragnd
oating point memory addresses are accepted by the memory a&ss unit,
which decodes the non-integer address, reads the valuegetioin the nearest
memory locations and interpolates linearly.

v

ACTIVITY

R
SINOGRAM Host

PROJECTOR
3- CONVOLVE
Legend:

- GPU KERNELS ﬂ-

- MEMORY STRUCTURES 2D IFFT £ 2D FFT izn FFT

Zero Pad

4 - LINE INTEGRAL

Rotate

Zero Pad

SUPPORT ACTIVITY

1- ROTATE SUPPORT 2 RESAMPLE
GPU

SINOGRAM

Figure 1.3: Rotation-based projection on GPU

Ray-tracing on

Projector

Activity and the depth dependent PSF are copied to the GPU gladd mem-
memory is allocated for the sinogram andf each of the
structures depicted in Figure 1.3. The support of the imageofdered list
of the x;y;z indexes of the image voxels) is extracted and stored in gldba

ory and additional

memory.

GPU can take advantage of the fast RAM memory of
the GPU and of hardware interpolation, however independeacof the rays
impedes e cient use of theshared memory It might be possible to take
advantage of the shared memory as the rays share some infotioa, how-
ever that would imply processing concurrently multiple patral rays in blocks
in a way that exposes the data in common. Rotation-based pegtion and
backprojection reorganize data in a way that exposes the datocality.

BACK-PROJ ECTION

DD-PSF ‘]

INPUT
Host

BACK-PROJECTOR 2- CONVOLVE Eoend
- GPU KERNELS
- MEMORY STRUCTURES

1- LINE BACK-PROJ ECT
3- ROTATE SUPPORT

Rolate 4 - RESAMPLE

SUPPORT

DD-PSF

BACK-PROJ ECTION

INPUT Line back-project Resanple

GPU

Figure 1.4: Rotation-based backprojection on GPU

For each position

of the gamma camera, the activity matrix lame is ro-
tated so that the front face of the volume faces the detectioplane. In order

8

to optimize the usage of the GPU, rotation is performed by muiplying the
support of the image by the rotation matrix, then the image ige-sampled
at the locations speci ed by the rotated support. Rotation 6 the support
maximizes thedevice occupancy(concurrent usage of the multiprocessors)
and takes advantage of theshared memoryby partitioning the matrix mul-
tiplication [15]. The trilinear interpolation is performed in hardware by the
texture fetch unit of the GPU at the cost of a memory access and coalesced
memory accesses are obtained by partitioning the memory trsfers in blocks.

For each camera's position, the activity is rotated from itgnitial position,

rather than from the previous camera's position, in order taninimize inter-
polation errors. After reinterpolation, each image plane pallel to the cam-
era is convolved with the PSF. Convolution is performed by re-padding
the plane to double its linear size, computing its 2D FFT, muiplying by

the FFT of the zero-padded PSF, back-transforming and trurating. As de-
picted by the arrows in Figure 1.3, the convolution is perfoned in place,
in order to minimize memory occupancy. 2D FFT is performed byneans
of the CUDA CUFFT library that takes into account all the architectural
factors and constraints of CUDA, memory coalesced access, kbamn icts

and e cient shared memory usage.

Finally a kernel sums all planes and stores the result in thenegram data
structure. Shared memory cannot be used in the summation gteas the
number of operations (sums) is exactly equal to the number afiemory ac-
cesses, howevailevice occupancyand memory coalescing are optimized by
partitioning the sums in blocks.

Backrojector

The sinogram and the PSF are transfered from the host machiRAM to
the GPU global memory and all the structures depicted in Fige 1.4 are
allocated on the GPU memory. Two volumes are allocated for ¢hbackpro-
jection, a rotating volume and a xed volume that is initialized to 0 and
contains in the end the result of the backprojection.

One projection at a time is extracted from the sinogram datatsicture and
the value on each pixel is backprojected to the rotating vofue along lines
perpendicular to the detection plane. This step is perforndeby a GPU ker-
nel that copies a pixel to a localregister and then copies it back into all

the voxels in the same column of the rotating volume. Each pla of the
rotating volume is then convolved in place with the PSF by mdiplication in
the frequency domain. The rotating volume is rotated to the o position
and then accumulated into the xed volume.

The same series of operations is repeated for each camerasifon.

1.3.3 Reconstruction Algorithms

On top of the projection and backprojection routines, NiftyRec implements a
number of reconstruction algorithms. Let the radio-pharmeeutical activity
within the region of interest of the patient's body be denoté by y, with
b= 1;:;Ny and the number of counts in a detector bin be denoted byy,
with d =1;::; Ng. The probability that a photon emitted in bis detected in
d is denoted bypyg.

MLEM

Maximum Likelihood Expectation Maximization [1].

() _ g

1 X z
b PP papr—— (1.6)

dPod w0 Poed P

where k is the itaration number. Unconstrained MLEM su ers from di-
mensional instability: after a certain number of iteratiors the noise starts
to diverge; for this reason typically the algorithm is stoppd after a given
number of iterations. Maximum a-posteriori reconstructia algorithms can
converge to a global maximum and thus can easily adopt stopy criteria
based on relative error of the image estimate.

OSEM

Ordered Subsets Expectation Maximization [16]: projectiodata is divided
into an ordered sequence of subsets. An iteration of OSEM is ©dled as a
single pass through all the subsets, in each subset using therent estimate
to initialize application of EM with that data subset. In SPECT the OSEM
algorithm can provide more than an order of magnitude acce&ion over
MLEM, maintaining similar image characteristics. While ay subset of the
projection space may be considered, here by subset we intengubset of the
projection angles.

10

. . 1 X Z
9I(Jk)(| + 1) = /ylgk)(l)p pde d (K) /:
a2s(i) Ped g 5,) w Poa Yo (1)

(1.7)

where yék)(i + 1) represents the updated iterand after processing subset
S(i) contains the projection angles of subsetand k represents the iteration
number.

OSL-MAPEM

Maximum a-posteriori Expectation Maximization does not geerally have a
closed form solution, however the One Step Late (OSL) algthrim introduced
by Green [17] can be adopted with any prior that is di erentidle once with
respect to the activity in each voxelb.

(k+1) _ oK) 5 1 X

b b F

Zq
: PodP——5 (1.8)
d Pbd %z)]y:/y(k) d t Preed 9&‘;)
where p(y) is the prior probability of activity y. The Matlab Toolbox of
NiftyRec has a few examples of activity priors, such as Totalariation and
priors based on a coregistered intra-subject anatomical age. Please refer
to the inline Matlab documentation.

Gradient Ascent

NiftyRec implements a simple gradient ascent algorithm forpgimization of
the log likelihood and log posterior for maximum a-posterioestimation of
the activity.

logp(yjz) logp(zjy) +log p(y) (1.9)

o @ogp(zjy). @ogp(y).
plert) = 00+ Tyly:w) + Tylyw(k) (1.10)
; X X
ogp(zjy). a
@ g@?(1Y) oy = Pt PP (1.11)

The Matlab Toolbox of NiftyRec has a few examples of activity p-
ors, such as Total Variation and priors based on a coregiség intra-subject
anatomical image. Please refer to the inline Matlab documtation.

11

Scatter correction

NiftyRec implements the Reconstruction Based Scatter Compstation (RBSC)
algorithm for scatter compensation [18].

(k+1) _ 'y

(k+1) - (1.12)

1.4 Algorithms for Transmission Tomography

1.4.1 Projection

Attenuation

Detector

Figure 1.5:

The GPU accelerated projection algorithm is inspired on theolume ren-
der example included in the CUDA SDK 23. The attenuation map is de ned
on a 3D grid of size Kx; Ny; N,) voxels. Each GPU thread computes one ray
from the light source to a detector pixel, accumulates the &rption coe -
cient along the ray and stores the result in the correspondirpixel of the 2D
detector matrix. Attenuation is stored as a 3D CUDA array and $ accessed
by means of the the CUDA Texture Fetch Unit in order to exploit the cache
system of the GPU and the hardware trilinear interpolation éature.

The algorithm scales for any size of the detector and of thetahuation map

12

by launching a variable number of blocks of (16 16) threads, in order to
cover all the detector pixels. The bigger the attenuation mavolume, the
longer each threads needs to iterate (not all threads perfarthe same amount
of operations, some terminate earlier). The position of theource is the same
for all threads and is stored in constant memory; given det&r size in num-
ber of pixels {mageW;imageH), each thread computes its coordinate in a
reference normalized plane:

uint x = blockldx.x blockDim.x + threadldx.x;
uint y = blockldx.y blockDim.y + threadldx.y;
if ((x >=imageW) jj (y >= imageH)) return ;
/lu and v are in normalized detector pixel [1, 11 >[1,1]

float u = (x / (float) imagew) 2.0f 1.0f;
float v = (y / (float) imageH) 2.0f 1.0f;

Then each thread computes the position of the detector pixely multiplying
its position in the reference plane by the (4 4) transformation matrix that
represents the position of the detector with respect of theeference plane
(cnvViewMatrix). Finally the thread computes the unit vector D that
points from the source to the detector pixel:

Ray eyeRay;
eyeRay.o = source;
eyeRay.d = normalize(make _float3 (mul(c _invViewMatrix ,

make_float4 (u,v, 1.0f,1.0f))) eyeRay.o0);

The attenuation map is de ned between (1; 1; 1) and (1,1;1). Each
thread computes the intersection with the attenuation map bunding box
in order to accumulate attenuation only where it is de ned. The ray-box
intersection is based on the method of "slabs" implemented ithe Vol-
ume Rebderer in the CUDA SDK and explained ittp://www.siggraph.
org/education/materials/HyperGraph/raytrace/rtinter 3.htm. If the
ray does not intersect the box then the thread terminates, berwise it loads
from texture memory the attenuation at distancet,ear (see gure 1.5) from
the source along directionD and iteratively loads attenuation moving at
constant steps t until the end of the box is reached:

float sum;

float t = tnear;

float3 pos = eyeRay.o + eyeRay.d tnear;
float3 step = eyeRay.d tstep;

for (int i=0; i <maxSteps; i++) f
float sample = tex3D(tex, pos.x 0.5f+0.5f, pos.y 0.5f+0.5f,

13

pos.z 0.5f+0.5f);

sum = sum + sample;
t += tstep;
if (t > tfar) break ;

pos += step;

Finally the thread writes the result back in global memory ad terminates:

d_output[y imageW + x] = sum;

14

Chapter 2

Developer's Guide

2.1 Getting Started

The Developer's Guide is intended for those who want to extdrthe func-
tionality of NiftiRec; it explains the algorithms that NiftyR ec implements,
outlines the structure of the code and explains how to extenitl Please re-
fer to the User's Guide in order to use NiftyRec through the C API pothe
Python or Matlab interfaces. In this case you will not need tanderstand
all the bits and pieces of NiftyRec.

In order to embed NiftyRec functionalities within third party applica-
tions or to cerate custom applications that make use of Nifty&c through its
C API, it is not necessary to build NiftyRec from the source if a Bckaged
Release 3.1.1 is available for the architecture and operadi system of your
machine. In this case, you might want to simply link againsthie NiftiRec
compiled libraries. All the NiftiRec libraries and header les are installed by
the self installer of the Packaged Release. A CMake FindPage module is
provided 2.2.1 in order to nd automatically the headers andibraries with
CMake.

If you intend to extend NiftiRec then you will have to compile i from
source. Compilation is based on the cross-platform builgstem CMake.

2.1.1 Compile with CMake

NiftyRec is based on the CMake cross-platform build-systentCompilation
of NiftyRec with CMake generates all the libraries, the binar executable
les and the documentation, and optionally creates a selfistalling package

15

for your platform for distribution of NiftyRec binaries. The self-installing
package will install all the libraries, the binary executales, the documen-
tation, the development le headers and the Matlab and Pytho toolboxes.
Self-installers for some of the most common platforms can lbewnloaded
from http://niftk.sourceforge.com . In order to extend the functionality
of NiftyRec it is necessary to download its source and compiégth CMake.

Linux Debian

Install ccmake or cmake-gui. Under Debian Linux install frontepositories:
..$ sudo apt-get install cmake-gui

Download and uncompress NiftyRec source. cd to the project malirectory,
create here a folder 'build’, cd to that folder and run cmake:

..$ mkdir build

..$ cd build

..$ cmake-gui ..
Select options, set the BUILDTYPE to Release or to Debug and set all the
required paths for additional dependencies if you selectady of the options.
Con gure and Generate. Now quit ccmake/cmake-gui and build

..$ make build

In order to create an installation package with CPack run makwith option
'‘package’

..$ make package
In order to install NiftyRec in the system run make with option'install’
..$ sudo make install

or install the package created with 'make package'.

Windows

Install cmake. Download and uncompress source. Open the smidirec-
tory with Windows Explorer and create here a new folder 'buil'. Launch

16

CMake and open CMakelLists.txt from the main directory of NifyfRec. Se-
lect options, set the BUILD.TYPE to Release or to Debug and set all the
required paths for additional dependencies if you selectady of the options.

Con gure and Generate. Browse the 'build' directory and doble click on

the Visual Studio project le. Click Compile button in Visual Studio. Cre-

ate self-extracting installer by compiling the corresporidg target in Visual

Studio.

2.2 Software Overview

2.2.1 Directory Tree

/

| CMakelLists.txt Main CMake list le, sets up build op-
S tions and includes all the subfolders.

.__emission-lib Source code of NiftyRec Emission

Tomography core libraries. All of
NiftyRec libraries for Emission Tomog-
raphy are here except for the mex ex-
tensions and the GPU accelerated rou-
tines, which are in emission-libgpu.

| _et.ecpp.txt e Implements the Nifti Interface. The
subset of the NiftyRec functions de-
ned here allows to use all the function-
alities of NiftyRec. The C Array In-
terface only imports this library, which
binds to all other libraries of NiftyRec,
including the libraries for GPU acceler-

ation.
| et array Interface.cpp Implements the C Array Interface.
.__emission-lib _gpu ... Routines for GPU acceleration. They

are functinoally identical to some of
the functions in emission-lib but these
make use of the NVidia CUDA Run-
time interface for GPU acceleration.

17

|__transmission-lib Source code of NiftyRec Transmission
Tomography core libraries. All of
NiftyRec libraries for Transmission To-
mography are here except for the mex
extensions and the GPU accelerated
routines, which are in transmission-
lib_gpu.

|__transmission-lib _gpu ... Routines for GPU acceleration. They
are functinoally identical to some of the
functions in transmission-lib but these
make use of the NVidia CUDA Run-

time interface for GPU acceleration.
. Matlab ..o Contains the source code for the Mat-

lab extensions. Each Matlab extension
function has a .cpp and a .h le. The
Matlab Toolbox is made up of mex ex-
tensions, m les and documentation.
Subfolders of Matlab contain the m les
and the Documentation.

LM e, m les for the Matlab Toolbox.
o [0 Documentation for the Matlab Tool-
box.

L NiftyRecCcccoeveenee Python extension module.

L APPS e Standalone applications based on

L NiftyRec
niftyrec _gui GTK based GUI for NiftyRec

L dOC e NiftyRec documentation.

L NIftE s Niftilib source code. De nes Nifti data
structures and routines for 10 of Nifti
les.

L MISC e, Miscellaneous functions.

2.2.2 Programming Guidelines

Development of NiftyRec is inspired to the agile programmianphilosophy,
Working software is the principal measure of progress, fateface conver-
sation between the developers has been the main form of commuation.
There was a continuous attention to good design and technicexcellence,
while always opting for simplicity. The programmers tried ® make the code
as open as they could by adopting meaningful names, followirtonsistent
naming conventions and avoiding criptic bits of code. As in UriProgram-
ming, data dominates, the code is based on the data structwée ned in the

18

niftilic http://niftilib.sourceforge.net/ library and given this choice
the algorithms are almost self-evident.

2.3 Programming Interfaces

C Array API Nifti API Nifti Lib
Ffw

2.3.1 Nifti Interface

All functions in NiftyRec take as parameters pointers tonifti .image data
structures, de ned in niftilib . Developing NiftyRec is simple, one needs to
understand what are the elds in thenifti _image structure. These structures
are well suited to medical images and image in general (in adad sense,
activity, projections, gradients, attenuation image, pait spread function, ..)
as all the parameters of interest for the image are stored ime structure,
allowing one to pass the image and all the information relemtito that image,
by one pointer. NiftyRec makes heavy use ofifti .image structures, most
of the functions take as parameters pointers taifti .image structures which
they can then read and modify.

2.3.2 C Array Interface

While NiftyRec internally uses theniftilib data structures in order to simplify
the handling of images and parameters, it provides a prograning interface
entirely based on C arrays in order to simplify embedding of RyRec into
third party applications. The programmer who wants to make se of NiftyRec
but does not intend to extend its functinoality, shouldn't be required to learn
how to use the niftilib data structures (though they are quie simple). The
C Array Interface is based entirely on C arrays and exposes abset of the
functions of NiftyRec that allows one to use all its functionkties.

The source leset-lib/ _et array_interface.cppand et-lib/ _et_array_interface.h

implement the C Array Interface. Each of the functions de nechere assem-
bles the required niftilib structures, calls a function fran the Nifti Interface,

19

then destroys the structures that it created.

Note that Matlab and Python bindings are built on top of the C Array
Interface, as pictured in gure 2.3.

2.3.3 Matlab

The Matlab Toolbox for NiftyRec is based on mex Matlab extensns. Each
of the functions of the NiftyRec C Array Interface has a corresmding mex
source le that de nes its interface to Matlab. The folder et-mex contains
the source code of the mex extensions. Subfoldersetfmex contain addi-
tional Matlab m les and the Matlab inline documentation and manual for
NiftyRec. The mex interface is a thin layer on top of the C Array hterface.
Each function correponds to one .cpp source le and a .h heada et-mex
Edit one of the mex sources iret-mex to understand how to create a mex
extension for a new function in the C Array Interface.

Note that often mex Matlab extensions are compiled within Mdab by run-
ning the mex .. command with the source les as parameters. This creates
a mex le, which Matlab recognises as an extension. The mexelis actually
a shared library (where the extension of the le is renamedMatlab uses an
external compiler to generate the mex and it sets up automatlly all the op-
tions for the compiler, including where it can nd the Matlablibraries (which
the mex le builds against). NiftyRec uses the compiler direty to build the
mex. A macro in the CMake list le (et-mex/CMakeLists.txt) sets the param-
eters for the compiler and edits the extension of the outputyshamic libraries.
This allows us to automatically compile the Matlab extensios along with
the NiftyRec source.

2.3.4 Python

Python bindings are built on top of the C Array Interface and ae based
on Python Ctypes. Ctypes is a Python module that allows one tmterface
dynamic libraries written in C and execute functions that m&e use of basic
C types such as int, oat, double, char, arrays and pointersat the former
types. There are a few advantages of Ctypes over other metlsot interface
C code with Python, one being simplicity of use and another g that the
interface is independent from the version of Python and frorthe compiler.
Building a Python extension module against the Python librees de ned in
Python.h requires the same compiler that was used to compitee Python
libraries; this is generally not a problem under Linux, buttican be a problem

20

under Windows, where Python is typically installed with theself-extracting
installer which adds to the system a copy of the libraries thiavas compiled
with a speci ¢ compiler, which typically is a commercial corpiler. The same
problem applies to all the automatic wrappers that create ae to be built
againsts Python libraries. Ctypes however is a good solutias long as the
number of functions to be wrapped is small and as long as is stes (or is
not over complicated) to use only basic C types, which is these of NiftyRec.

If you edit et_array_interface.cpp you will notice that all the functions that
are exposed to Python are de ned with theextern "C" syntax in order to
instruct the compiler to treat them as C functions. This soles the prob-
lem of using C++ code through Ctypes because of mangling ofehfunction
names for overclassing: C++ compilers modify the functionames in order
to encode the types of the parameters for that particular impmentation of
the function, though the compiler changes the name in a predable manner,
this is not standard across di erent compilers.

Editing NiftyRec.py under the NiftyRec folder will clarify how the Ctypes
based Python extension module works. NiftyRec.py tells Ctygs to load the
dynamic library lib_et_array _interface and speci es the types of the parame-
ters for the functions that NiftyRec.py interfaces (which ae all the functions
that the C array interface exposes). Then NiftyRec.py exposéo the Python
programmer a number of functions that takenumpy arrays as parameters and
return objects of the same classjumpy array objects expose the Pythorar-
ray interface, which allows one to obtain, within the Python environment,a
pointer to the data bu er that contains the actual data of the array object;
NiftyRec.py extracts the pointer and instructs Ctypes to pas it over to the
functions in lib_et array _interface.

All the functions in the C Array Interface are atomic in that they create the
data structures that they need and then they free them beforthey return;
when they return data they always write the data into a memorysection
that was preallocated (they take pointers as parameters) agpposed to al-
locating the data structure for the result and returning a ponter to that
structure (which would require the use of double pointers)This means that
it is never necessary to deallocate resources, except foe tresources that
were allocated before the function call to the C Array Interfee. This simple
design criterium, which is possible because of the simptycof the interface,
makes the garbage collector of Python responsible for theallecation of all
the resources: numpy arrays for the results are created in tiRec.py, the
pointer to the C array that is contained within the object is passed to some
function in the NiftyRec C Array Interface which writes data irto it, then the

21

array is deallocated by the garbage collector when the objds deleted; the
functions in NiftyRec return the object to some calling fundbn and so on,
until at some point the object has no references because soiection quits
and does not return the object (or embeds it as a member of somiher ob-
ject), in which case the garbage collector deallocates dfle resources related
to that object, including the underlying C array which contaned the data.

22

Chapter 3

User's Guide

3.1 Getting Started

3.1.1 Install Packaged Releases

The packaged releases for some of the most common hardwaedfpfrms can
be downloaded from the NiftyRec website. These will installroyour system
the precompiled NiftyRec libraries, binaries, documentadn the Matlab and
Python Toolboxes and the development headers to use the C ARi.a pack-
aged release is not available for your system, then you needduild NiftyRec
from source with the CMake build system, following the instrctions in the
Developer's Guide. This will also optionally install NiftyRec in your system
and create a packaged release for distribution of NiftyRec tmachines with
the same CPU architecture and compatible operating system.

Windows

Double click on the self-extracting installer and follow istructions on screen.
By default NiftyRec is installed under C:/ProgramFiles/NiftyRec/ . This
folder contains subfolders with the libraries, binaries, dader les for de-
velopment (see Developer's Guide) and the Matlab and Pythoextensions.

Linux Debian

Double click on .deb installer and follow instructions on seen. The deb
package will install libraries, binaries and headers for delopment (see De-
veloper's Guide) under/ustr/local/lib , /usr/local/bin and /usr/local/include ;
the Python module is installed amongst the site-packages @nvill be found
automatically by Python; the Matlab Toolbox is installed in/usr/local/niftyrec/-

23

matlab and the documentation in/usr/local/niftyrec/doc .

3.2 Matlab Toolbox

Launch Matlab. Add path to NiftyRec Toolbox.
>> addpath /usr/local/niftyrec/matlab

Or add permanently by clicking on File->Add path. The path NifyRec Tool-
box is set as an option in CMake. It defaults to '/usr/local/niftyrec/matlab’

in Linux and MAC OS and in Windows it's in the NiftyRec install directory,
which defaults to C:/ProgramFiles/NiftyRec Open Matlab hep and click on
Emission Tomography Toolbox to visualize the documentatio of NiftyRec
Toolbox.

3.2.1 Transmission Tomography

In order to use NiftyRec-TT within Matlab, launch Matlab and add path to
the NiftyRec-TT matlab folder:

>> addpath /usr/local/niftyrec/matlab

Or add permanently by clicking on File->Add path. The path NifyRec-TT
matlab is set as an option in CMake. It defaults to '/usr/locd/matlab’ in
Linux and MAC OS and in Windows it's in the NiftyRec-TT install directory,
which defaults to C:/ProgramFiles/NiftyRec. The Matlab interface consists
on a mex le that wraps the projection function in the C API. In order to
hide the latency due to memory transfers, the function perfms multiple
projections in one call and the parameters are vectors. Seeetexample
below.

Example

N _projections = 200;
attenuation = ones(256,256,256);
source = zeros (N _projections ,3);

scale = ones(N_projections ,2);
trans = zeros (N _projections ,3);
rot = zeros (N _projections ,3);
source(:,2)= linspace (1,1,N_projections);

p = tt _project _ray_mex(attenuation ,[512,512],source,scale ,trans,rot);
for i = 1:N _projections

24

imagesc (p(:,:,i)); colormap gray ; pause (0.1)
end

3.3 Python Extension Module

The NiftyRec Python module is installed amongst the site-p&ages by the
binary installers and by 'make install'. Open the Python inerpreter and
import NiftyRec

>>> from NiftyRec import NiftyRec

3.4 C API

In order to build against NiftyRec, include in your project the headers folder,
installed under/usr/local/headers or C:/ProgramFiles/NiftyRec/headers (typ-
ically) and instruct the linker to link against the NiftyRec libraries installed
under /usr/local/headers or C:/ProgramFiles/NiftyRec/lib .

3.4.1 Transmission Tomography

The C API currently implements one function for projection wih the ray-

cast algorithm. In order to hide the latency due to memory trasfers, the
function performs multiple projections in one call and the grameters are
arrays:

typedef unsigned short VolumeType;
struct float_2
f
float x, y;
9;
typedef struct float .2 float_2;
struct float_3
f
float x, vy, z;
9;
typedef struct float .3 float_3;
struct int_3
f
int x, vy, z;

g;
typedef struct int_3 int_3;

struct u_int _3

25

f
u_int x, vy, z;

9;

typedef struct u_int .3 u-int_3;
struct u.int _2

f

u_int w, h;

9,
typedef struct u_int _2 u_.int_2;

int tt _project_ray_array(VolumeType h _volume[], u_int_3 volume_voxels,
float out_projections[], u _int n _projections ,
float _.2 detector_scale[], float_3 detector _transl[],

float -3 detector_rotat[], u -int_2 detector_pixels ,
float _3 source_pos|[]);

The function takes as input a 3D unsigned integer attenuatio map, stored
as a monolithic array of size lx Ny N;) and lls the oat array of
size (mageW ImageH Nyrojections) (Nyrojections needs to be spec-
ied as a parameter). The parameterdetectopixels sets the number of
pixels of the detector: one ray is cast for each detector pixdmageW =
detectonixels[0], ImageH = detectonixels[1]).

All the remaining parameters represent the 3D position of theletector,
its size, and the position of the source. Each parameter is array of
length Nyrojections, where each element of the array represents the pa-
rameter for projectioni. Parameters aredetector,cale, detectokranslation,
detector; otation, detectorixels, source,osition.

detectorcale scales the detector irK andY (see gure 3.1), if itis set (1 1),
the detector is of size (2,2), (green plane in gure 3.1).

detectokranslation is the translation of the detector. If it is set to (Q0; 0),
the detector is centered in (00; 1).

detector; otation is the rotation of the detector with respect of axisX;Y; Z).
source,osition is the position 3D of the point source.

z (xv,yv,zv) (xv,yv,zv)

(xt,yt,zt)

(0,0,0)

(xs,ys,zs)

Figure 3.1:

26

Bibliography

[1] L.A. Shepp and Y. Vardi. Maximum Likelihood Reconstructio
for Emission Tomography. IEEE Transactions on Medical Imaging
1(2):113{22, 1982.

[2] J. Qi and R.M. Leahy. lterative reconstruction techniges in emission

computed tomography.Physics in Medicine and Biology51(15):R541{
R578, 2006.

[3] S. Borman. The expectation maximization algorithm: A sbrt tutorial.
Unpublished paper available at http://www.seanborman.conipublica-
tions. Technical report, 2004.

[4] C.A. Johnson, J. Seidel, Carson R.E., Gandler W.R., GreeM.V.,
E. Daube-Witherspoon, and A. Sofer. Evaluation of 3D recorsic-
tion algorithms for a small animal PER cameralEEE Transactions on
Nuclear Science 44(3):1303{1308, Jun 1997.

[5] T. Frese, N.C. Rouze, C.A. Bouman, K. Sauer, and G.D. Hutchsn
Quantitative comparison of FBP, EM, and Bayesian reconstittion al-
gorithms for the IndyPET scanner.lEEE Transactions on Medical Imag-
ing, 22(2):258{276, Feb 2003.

[6] G.L Zeng and G.T. Gullberg. Frequency Domain Implement®n of
the Three-Dimensional Geometric Point Response Correation SPECT
Imaging. IEEE Transactions on Nuclear Science39(5):1444{1454, 1992.

[7] A. Rahmim and H. Zaidi. PET versus SPECT: strengths, limita

tions and challengesNuclear Medicine Communications29(3):193{207,
2008.

[8] R.L. Siddon. Fast calculation of the exact radiologicgbath for a three-
dimensional CT array. Medical Physics 12(2):252{255, 1985.

27

[9] S. Cho, Q. Li, S. Ahn, B. Bai, and R.M. Leahy. lterative Imag Re-
construction Using Inverse Fourier Rebinning for Fully 3-D ET. IEEE
Transactions on Medical Imaging 26:745{756, 2007.

[10] F. Xu. Fast Implementation of Iterative Reconstructionwith Exact Ray-
Driven Projector on GPUs. Tsinghua Science & Technology05(20):30{
35, 2009.

[11] H. Cramer. Mathematical Methods of Statistics Princeton University
Press, 1957.

[12] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. HardyL..G. Trabuco, and
K. Schulten. Accelerating molecular modeling applicationsith graphics
processors.Journal of Computational Chemistry 28:2618{2640, 2007.

[13] I. U mtsev and T. Martinez. Quantum chemistry on grapica process-
ing units. 1. Strategies for two-electron integral evaluan. Journal of
Chemical Theory and Computation4(2):222{231, 2008.

[14] S. Pedemonte, A. Gola, A. Abba, and C. Fiorini. Optimum realime
reconstruction of gamma events for high resolution Anger cara. In
IEEE Nuclear Science Symposium Conference Recophges 3388{3394,
November 2009.

[15] NVidia CUDA Programming Guide, version 2.3, Jan 2008.

[16] H.M. Hudson and Larkin R.S. Accelerated Image Reconstruah Using
Ordered Subsets of Projection Data.lEEE Transactions on Medical
Imaging, 13(4), 1994.

[17] P.J. Green. Bayesian reconstructions from emissionntography data
using a modi ed EM algorithm. IEEE Transactions on Medical Imaging
9(1):84{93, 1990.

[18] D.J. Kadrmas, Frey E.C., Karimi S.S., and Tsui B.M.W. Fat Imple-
mentations of Reconstruction-Based Scatter Compensatiom Fully 3D
SPECT Image Reconstruction.Phys Med Biol, 43(4):857{873, 1998.

28

