
NiftyRec 1.6
Software Guide

June 28, 2012

Stefano Pedemonte
Alexandre Bousse

Marc Modat
Sebastien Ourselin

Contents

1 Introduction 2

1.1 Overview . 2
1.2 Feature List . 2
1.3 Algorithms for Emission Tomography 3

1.3.1 Projection and Backprojection 3
1.3.2 GPU acceleration . 6
1.3.3 Reconstruction Algorithms 10

1.4 Algorithms for Transmission Tomography 12
1.4.1 Projection . 12

2 Developer’s Guide 15

2.1 Getting Started . 15
2.1.1 Compile with CMake 15

2.2 Software Overview . 17
2.2.1 Directory Tree . 17
2.2.2 Programming Guidelines 18

2.3 Programming Interfaces . 19
2.3.1 Nifti Interface . 19
2.3.2 C Array Interface . 19
2.3.3 Matlab . 20
2.3.4 Python . 20

3 User’s Guide 23

3.1 Getting Started . 23
3.1.1 Install Packaged Releases 23

3.2 Matlab Toolbox . 24
3.2.1 Transmission Tomography 24

3.3 Python Extension Module . 25
3.4 C API . 25

3.4.1 Transmission Tomography 25

1

Chapter 1

Introduction

1.1 Overview

NiftyRec provides routines for Emission and Transmission Tomographic re-
construction. The software is written in C and computationally intensive
functions have a GPU accelerated version based on NVidia CUDA. NiftyRec
includes a mex-based Matlab Toolbox and a Python module that provide easy
to the low level routines for reconstruction, hiding the complexity of C and
of the GPU accelerated algorithms, while maintaining the full speed. Fast
projection and backprojection with depth-dependent collimator and detector
response and attenuation correction are at the core of NiftyRec. NiftyRec
has been designed for performance, ease of use, modularity, accessibility of
the code and portability.

1.2 Feature List

Projector and Backprojector

• Depth-dependent Point Spread Function (DDPSF)

• Attenuation correction

• Rotation based ray-tracing

• FFT based convolution

• GPU acceleration

Reconstruction algorithms

• Maximum Likelihood Expectation Maximization (MLEM)

2

• Ordered Subsets Exectation Maximization (OSEM)

• One-step-late Maximum a-posteriori Expectation Maximization (OSL-
MAPEM)

• Gradient ascent Maximum Likelihood and Maximum a-posteriori

Priors

• Total variation

• Joint Entropy based anatomical prior

Scatter Correction

• Reconstruction Based Scatter Correction (RBSC)

Bindings

• Matlab

• Python

Miscellaneous functions

• Generate 3D synthetic phantoms

• Load and write DICOM and NIFTY files

• GPU accelerated 3D affine transformation

1.3 Algorithms for Emission Tomography

1.3.1 Projection and Backprojection

Iterative reconstruction methods based on a stochastic model of the emission
process [1, 2, 3] have been widely shown to provide better image quality
than analytic reconstruction [4, 5]. The reason for the improvement in image
quality is that photon count statistics are taken in account in the model of
the imaging system; furthermore stochastic methods facilitate the inclusion
of complex system models that take into account detailed collimator and
detector response (CDR).
The CDR, including collimator geometry, septal penetration and detector
response, may be taken into account in a stochastic reconstruction algorithm
in the form of a Point Spread Function (PSF) that modulates the response
of an ideal Gamma Camera [6][7].

3

The computational complexity associated with stochastic reconstruction meth-
ods however still limits their application for clinical use and inclusion of com-
plex system models further increases the computational demand. Projection
and backprojection constitute the most burdensome part of a reconstruction
algorithm in terms of computational resources and memory and are per-
formed recursively at each iteration step.

Efficient computation of line integrals for projection and backprojection
by ray-tracing was proposed by Siddon [8]. However with a ray-based ap-
proach it becomes inefficient to include a depth-dependent PSF, as this re-
quires the casting of a number of rays within a tube of response for PET
[9] and a cone of response for SPECT [6]. Furthermore, though there exist
GPGPU accelerated implementations [10], ray-based projectors cannot fully
exploit Single Instruction Multiple Data (SIMD) architectures such as GPG-
PUs because of sparsity of data representation and low arithmetic intensity
due to independence of the rays.

NiftyRec is based on an implementation of the rotation-based projec-
tion and backprojection algorithm proposed by Zeng and Gullberg [6]. This
algorithm drastically reduces memory requirements and allows to perform
convolution with the PSF in the frequency domain in O(N logN) by means
of Fast Fourier Transform.
Rotation-based projection and backprojection are particularly well suited to
GPGPU acceleration because reorganization of the data into a regular grid
yields efficient use of the shared memory and of the global memory bandwidth
provided by the GPU architecture. Moreover the algorithm takes advantage
of the hardware based trilinear re-sampling, offered by the GPU’s 3-D tex-
ture memory fetch units.

Figure 1.1: Rotation-based projection: the activity is re-sampled on a regular
grid aligned with a camera and then projected. This enables FFT based
convolution with the (depth-dependent) collimator-detector response.

Let the radio-pharmaceutical activity within the region of interest of the

4

patient’s body be a continuous function denoted by ỹ. In order to readily
discretize the reconstruction algorithm, it is convenient to imagine that the
activity is in first place discrete in space [1]. Let us approximate ỹ by a set
of point sources y = yb, b = 1, .., Nb displaced on a regular grid.
As each point source emits radiation at an average rate yb proportional to the
local density of radio-tracer and emission events in a same voxel are not time
correlated, the number of emissions in the unit time is a Poisson distribution
of expected value yb. The geometry of the system and attenuation in the
patient determine the probability pbd that a photon emitted in b is detected
at detector pixel d. From the sum property of the Poisson distribution, the
photon count in d has Poisson pdf with expected value

∑

b pbdyb. Given
activity y, the probability to observe counts z is

p(z|y) =

Nd
∏

d=1

P(
∑

b

pbdyb, zd) (1.1)

Amongst all the activity configurations that might have generated the ob-
served photons, the activity that maximizes the likelihood function is optimal
in the sense of the L2 norm of the difference from the true value, for the log
linear distribution p(z|y) [11].

ŷ = argmax
y

p(z|y) = argmax
y

log p(z|y) (1.2)

Expanding log p(z|y):

ŷ = argmax
y

Nd
∑

d=1

(

∑

b

pbdyb + zd log
∑

b

pbdyb

)

(1.3)

A gradient-based optimization algorithm, such as gradient ascent, requires
the gradient of the likelihood function with respect of the activity in each
point source, differentiating the log of 1.1:

∂ log p(z|y)

∂yr
|y=ȳ =

∑

d=1

pbd +
∑

d=1

pbd
zd

∑

b′ pb′d yb′
|y=ȳ (1.4)

∑

b′ pb′d yb′ is referred to as projector, and
∑

d pbdfd as backprojector of fd.
Similarly the Expectation Maximization algorithm for maximization of the
likelihood (MLEM) implies projection and backprojection [1]:

ŷ
(k+1)
b = ŷ

(k)
b

1
∑

d pbd

∑

d

pbd
zd

∑

b′ pb′d ŷ
(k)
b′

(1.5)

5

In case of ideal CDR, with a parallel hole collimator, the system matrix pbd
is non-zero only along lines perpendicular to the collimator entry surface and
the projection is a line integral operator. A more detailed system model ac-
counts for the sensitivity of each detector pixel to radiation emissions from
each voxel. With a planar detector, coupled to a parallel hole, cone beam or
fan beam collimator, the sensitivity is invariant to shift along the detector
plane. With shift invariant CDR, projection is factorisable into a line integral
operator and a convolution operator [6]. The CDR is generally dependent
upon the distance from the detector plane.

The rotation-based projection and backprojection algorithm proposed by
Zeng and Gullberg [6] was adopted as it suits the GPU architecture and is
convenient to be incorporated with depth-dependent response functions. For
each position of the gamma camera, the image matrix volume is rotated so
that the front face of the volume faces the detection plane - Figure 1.1. As
the image is re-interpolated on a grid that is aligned with the detection plane,
all the point sources that lay on a same plane parallel to the detector are
now at the same distance from the detector. A depth-dependent PSF that
models the CDR can be incorporated efficiently by convolving each parallel
plane with the PSF that models the relative to the distance of the plane from
the collimator. The convolution can be performed by multiplication in the
frequency domain, reducing the complexity from O(N2) to O(N logN).
Backprojection similarly takes advantage of rotation to incorporate the depth
dependent PSF. Details of the implementation of the projector and backpro-
jector are given in the next section.

1.3.2 GPU acceleration

Figure 1.2: Memory structure of the host machine and GPU and typical
memory bandwidth.

For problems that present enough task parallelism, state of the art GPUs
can provide an acceleration of up to 10x over a high end CPU, however the

6

speedup can increase by another order of magnitude if the structure of the al-
gorithm allows for efficient use of the shared memory of the GPU [12, 13, 14].
While on CPUs the cache hierarchy compensates costly accesses to external
RAM and cache heuristics account for a large class of computational prob-
lems, the simplified memory hierarchy of GPUs requires careful design of the
algorithms for efficient memory access. The external memory is directly ex-
posed to the programmer, who has to consider explicitly coalesced access due
to the mismatch between data rate and cycle time of the DDR memory. On
the other hand the simpler structure of the memory and vicinity of the RAM
to the processor yield data throughput 10 times higher than the throughput
between CPU and RAM - Figure 1.2.

The fast RAM memory of the GPUs explains the 10× speedup, however
the Single Instruction Multiple Data (SIMD) architecture and the shared
memory of the GPU provide additional speedup for a class of computational
problems. In the SIMD architecture, many processor cores fit on the same
chip due to simplified design of the processor cores, which are grouped, in the
case of NVidia GPUs, in a multiprocessor with a single common fetch unit.
Multiple cores can operate concurrently in a multiprocessor if they execute
the same instruction, so if the computational problem is such that the same
operation is performed on multiple segments of data, the GPU can use a
great number of processors at the same time. As the RAM data throughput
would still be too low to continuously feed data to all the cores, the processor
cores that are grouped in a multiprocessor have access to an on-chip mem-
ory that can be read and written concurrently by all the cores in a single
clock cycle, through multiple data paths. The size of the shared memory is
limited to a few Kbytes on currently available GPUs. This design offers the
possibility to exploit the full power of the cores as long as the cores in a
multiprocessor can reuse the data that resides in the shared memory, hiding
accesses to the global memory, that is hundreds of times slower. In order to
take full advantage of the GPU architecture, a computational problem needs
to expose parallel tasks that run on each multiprocessor, each task being
partition-able into serial tasks that use limited memory (up to a few Kbytes)
and present a high ratio between the number of operations and the accesses
to memory.

Another feature offered by Nvidia GPUs is hardware trilinear interpola-
tion. A portion of memory may be specified as a 1D, 2D or 3D array and
floating point memory addresses are accepted by the memory access unit,
which decodes the non-integer address, reads the values stored in the nearest
memory locations and interpolates linearly.

7

Figure 1.3: Rotation-based projection on GPU

Ray-tracing on GPU can take advantage of the fast RAM memory of
the GPU and of hardware interpolation, however independence of the rays
impedes efficient use of the shared memory. It might be possible to take
advantage of the shared memory as the rays share some information, how-
ever that would imply processing concurrently multiple partial rays in blocks
in a way that exposes the data in common. Rotation-based projection and
backprojection reorganize data in a way that exposes the data locality.

Projector

Activity and the depth dependent PSF are copied to the GPU global mem-
ory and additional memory is allocated for the sinogram and for each of the
structures depicted in Figure 1.3. The support of the image (ordered list
of the x, y, z indexes of the image voxels) is extracted and stored in global
memory.

Figure 1.4: Rotation-based backprojection on GPU

For each position of the gamma camera, the activity matrix volume is ro-
tated so that the front face of the volume faces the detection plane. In order

8

to optimize the usage of the GPU, rotation is performed by multiplying the
support of the image by the rotation matrix, then the image is re-sampled
at the locations specified by the rotated support. Rotation of the support
maximizes the device occupancy (concurrent usage of the multiprocessors)
and takes advantage of the shared memory by partitioning the matrix mul-
tiplication [15]. The trilinear interpolation is performed in hardware by the
texture fetch unit of the GPU at the cost of a memory access and coalesced
memory accesses are obtained by partitioning the memory transfers in blocks.

For each camera’s position, the activity is rotated from its initial position,
rather than from the previous camera’s position, in order to minimize inter-
polation errors. After reinterpolation, each image plane parallel to the cam-
era is convolved with the PSF. Convolution is performed by zero-padding
the plane to double its linear size, computing its 2D FFT, multiplying by
the FFT of the zero-padded PSF, back-transforming and truncating. As de-
picted by the arrows in Figure 1.3, the convolution is performed in place,
in order to minimize memory occupancy. 2D FFT is performed by means
of the CUDA CUFFT library that takes into account all the architectural
factors and constraints of CUDA, memory coalesced access, bank conflicts
and efficient shared memory usage.

Finally a kernel sums all planes and stores the result in the sinogram data
structure. Shared memory cannot be used in the summation step as the
number of operations (sums) is exactly equal to the number of memory ac-
cesses, however device occupancy and memory coalescing are optimized by
partitioning the sums in blocks.

Backrojector

The sinogram and the PSF are transfered from the host machine RAM to
the GPU global memory and all the structures depicted in Figure 1.4 are
allocated on the GPU memory. Two volumes are allocated for the backpro-
jection, a rotating volume and a fixed volume that is initialized to 0 and
contains in the end the result of the backprojection.

One projection at a time is extracted from the sinogram data structure and
the value on each pixel is backprojected to the rotating volume along lines
perpendicular to the detection plane. This step is performed by a GPU ker-
nel that copies a pixel to a local register and then copies it back into all

9

the voxels in the same column of the rotating volume. Each plane of the
rotating volume is then convolved in place with the PSF by multiplication in
the frequency domain. The rotating volume is rotated to the zero position
and then accumulated into the fixed volume.

The same series of operations is repeated for each camera’s position.

1.3.3 Reconstruction Algorithms

On top of the projection and backprojection routines, NiftyRec implements a
number of reconstruction algorithms. Let the radio-pharmaceutical activity
within the region of interest of the patient’s body be denoted by yb with
b = 1, .., Nb and the number of counts in a detector bin be denoted by nd,
with d = 1, .., Nd. The probability that a photon emitted in b is detected in
d is denoted by pbd.

MLEM

Maximum Likelihood Expectation Maximization [1].

ŷ
(k+1)
b = ŷ

(k)
b

1
∑

d pbd

∑

d

pbd
zd

∑

b′ pb′d ŷ
(k)
b′

(1.6)

where k is the itaration number. Unconstrained MLEM suffers from di-
mensional instability: after a certain number of iterations the noise starts
to diverge; for this reason typically the algorithm is stopped after a given
number of iterations. Maximum a-posteriori reconstruction algorithms can
converge to a global maximum and thus can easily adopt stopping criteria
based on relative error of the image estimate.

OSEM

Ordered Subsets Expectation Maximization [16]: projection data is divided
into an ordered sequence of subsets. An iteration of OSEM is defined as a
single pass through all the subsets, in each subset using the current estimate
to initialize application of EM with that data subset. In SPECT the OSEM
algorithm can provide more than an order of magnitude acceleration over
MLEM, maintaining similar image characteristics. While any subset of the
projection space may be considered, here by subset we intend a subset of the
projection angles.

10

ŷ
(k)
b (i+ 1) = ŷ

(k)
b (i)

1
∑

d∈S(i) pbd

∑

d∈S(i)

pbd
zd

∑

b′ pb′d ŷ
(k)
b′ (i)

(1.7)

where ŷ
(k)
b (i + 1) represents the updated iterand after processing subset i,

S(i) contains the projection angles of subset i and k represents the iteration
number.

OSL-MAPEM

Maximum a-posteriori Expectation Maximization does not generally have a
closed form solution, however the One Step Late (OSL) algorithm introduced
by Green [17] can be adopted with any prior that is differentiable once with
respect to the activity in each voxel b.

ŷ
(k+1)
b = ŷ

(k)
b

1
∑

d pbd −
∂p(y)
∂yb

|y=ŷ(k)

∑

d

pbd
zd

∑

b′ pb′d ŷ
(k)
b′

(1.8)

where p(y) is the prior probability of activity y. The Matlab Toolbox of
NiftyRec has a few examples of activity priors, such as Total Variation and
priors based on a coregistered intra-subject anatomical image. Please refer
to the inline Matlab documentation.

Gradient Ascent

NiftyRec implements a simple gradient ascent algorithm for optimization of
the log likelihood and log posterior for maximum a-posteriori estimation of
the activity.

log p(y|z) α log p(z|y) + log p(y) (1.9)

ŷ(k+1) = ŷ(k) + β

(

∂ log p(z|y)

∂yr
|y=ŷ(k) +

∂ log p(y)

∂yr
|y=ŷ(k)

)

(1.10)

∂ log p(z|y)

∂yr
|y=ȳ =

∑

d=1

pbd +
∑

d=1

pbd
zd

∑

b′ pb′d ŷ
(k)
b′

(1.11)

The Matlab Toolbox of NiftyRec has a few examples of activity pri-
ors, such as Total Variation and priors based on a coregistered intra-subject
anatomical image. Please refer to the inline Matlab documentation.

11

Scatter correction

NiftyRec implements the Reconstruction Based Scatter Compenstation (RBSC)
algorithm for scatter compensation [18].

ŷ
(k+1)
b = ŷ

(k)
b

1
∑

d pbd

∑

d

pbd
zd

∑

b′ pb′d ŷ
(k)
b′ + n̂d

SC
(1.12)

1.4 Algorithms for Transmission Tomography

1.4.1 Projection

Figure 1.5:

The GPU accelerated projection algorithm is inspired on the volume ren-
der example included in the CUDA SDK 2.3. The attenuation map is defined
on a 3D grid of size (Nx, Ny, Nz) voxels. Each GPU thread computes one ray
from the light source to a detector pixel, accumulates the absorption coeffi-
cient along the ray and stores the result in the corresponding pixel of the 2D
detector matrix. Attenuation is stored as a 3D CUDA array and is accessed
by means of the the CUDA Texture Fetch Unit in order to exploit the cache
system of the GPU and the hardware trilinear interpolation feature.
The algorithm scales for any size of the detector and of the attenuation map

12

by launching a variable number of blocks of (16 × 16) threads, in order to
cover all the detector pixels. The bigger the attenuation map volume, the
longer each threads needs to iterate (not all threads perform the same amount
of operations, some terminate earlier). The position of the source is the same
for all threads and is stored in constant memory; given detector size in num-
ber of pixels (imageW, imageH), each thread computes its coordinate in a
reference normalized plane:

uint x = blockIdx . x∗blockDim . x + threadIdx . x ;
u int y = blockIdx . y∗blockDim . y + threadIdx . y ;
i f ((x >= imageW) | | (y >= imageH)) return ;

//u and v are in normalized de t e c t o r p i x e l [−1 ,−1]−>[1 ,1]
f loat u = (x / (f loat) imageW)∗2 . 0 f −1.0 f ;
f loat v = (y / (f loat) imageH)∗2 . 0 f −1.0 f ;

Then each thread computes the position of the detector pixel by multiplying
its position in the reference plane by the (4× 4) transformation matrix that
represents the position of the detector with respect of the reference plane
(cinvV iewMatrix). Finally the thread computes the unit vector ~D that
points from the source to the detector pixel:

Ray eyeRay ;
eyeRay . o = source ;
eyeRay . d = normal ize (make f loat3 (mul (c invViewMatrix ,

make f loat4 (u , v ,−1.0 f , 1 . 0 f)))− eyeRay . o) ;

The attenuation map is defined between (−1,−1,−1) and (1, 1, 1). Each
thread computes the intersection with the attenuation map bounding box
in order to accumulate attenuation only where it is defined. The ray-box
intersection is based on the method of ”slabs” implemented in the Vol-
ume Rebderer in the CUDA SDK and explained in http://www.siggraph.

org/education/materials/HyperGraph/raytrace/rtinter3.htm. If the
ray does not intersect the box then the thread terminates, otherwise it loads
from texture memory the attenuation at distance tnear (see figure 1.5) from

the source along direction ~D and iteratively loads attenuation moving at
constant steps ∆t until the end of the box is reached:

f loat sum ;
f loat t = tnear ;
f l o a t 3 pos = eyeRay . o + eyeRay . d∗ tnear ;
f l o a t 3 s tep = eyeRay . d∗ t s t ep ;

for (int i =0; i<maxSteps ; i++) {
f loat sample = tex3D (tex , pos . x ∗0 .5 f +0.5 f , pos . y ∗0 .5 f +0.5 f ,

13

pos . z ∗0 .5 f +0.5 f) ;

sum = sum + sample ;
t += ts t ep ;
i f (t > t f a r) break ;

pos += step ;

Finally the thread writes the result back in global memory and terminates:

d output [y∗imageW + x] = sum ;

14

Chapter 2

Developer’s Guide

2.1 Getting Started

The Developer’s Guide is intended for those who want to extend the func-
tionality of NiftiRec; it explains the algorithms that NiftyRec implements,
outlines the structure of the code and explains how to extend it. Please re-
fer to the User’s Guide in order to use NiftyRec through the C API or the
Python or Matlab interfaces. In this case you will not need to understand
all the bits and pieces of NiftyRec.

In order to embed NiftyRec functionalities within third party applica-
tions or to cerate custom applications that make use of NiftyRec through its
C API, it is not necessary to build NiftyRec from the source if a Packaged
Release 3.1.1 is available for the architecture and operating system of your
machine. In this case, you might want to simply link against the NiftiRec
compiled libraries. All the NiftiRec libraries and header files are installed by
the self installer of the Packaged Release. A CMake FindPackage module is
provided 2.2.1 in order to find automatically the headers and libraries with
CMake.

If you intend to extend NiftiRec then you will have to compile it from
source. Compilation is based on the cross-platform build-system CMake.

2.1.1 Compile with CMake

NiftyRec is based on the CMake cross-platform build-system. Compilation
of NiftyRec with CMake generates all the libraries, the binary executable
files and the documentation, and optionally creates a self-installing package

15

for your platform for distribution of NiftyRec binaries. The self-installing
package will install all the libraries, the binary executables, the documen-
tation, the development file headers and the Matlab and Python toolboxes.
Self-installers for some of the most common platforms can be downloaded
from http://niftk.sourceforge.com. In order to extend the functionality
of NiftyRec it is necessary to download its source and compile with CMake.

Linux Debian

Install ccmake or cmake-gui. Under Debian Linux install from repositories:

..$ sudo apt-get install cmake-gui

Download and uncompress NiftyRec source. cd to the project main directory,
create here a folder ’build’, cd to that folder and run cmake:

..$ mkdir build

..$ cd build

..$ cmake-gui ..

Select options, set the BUILD TYPE to Release or to Debug and set all the
required paths for additional dependencies if you selected any of the options.
Configure and Generate. Now quit ccmake/cmake-gui and build

..$ make build

In order to create an installation package with CPack run make with option
’package’

..$ make package

In order to install NiftyRec in the system run make with option ’install’

..$ sudo make install

or install the package created with ’make package’.

Windows

Install cmake. Download and uncompress source. Open the source direc-
tory with Windows Explorer and create here a new folder ’build’. Launch

16

CMake and open CMakeLists.txt from the main directory of NiftyRec. Se-
lect options, set the BUILD TYPE to Release or to Debug and set all the
required paths for additional dependencies if you selected any of the options.
Configure and Generate. Browse the ’build’ directory and double click on
the Visual Studio project file. Click Compile button in Visual Studio. Cre-
ate self-extracting installer by compiling the corresponding target in Visual
Studio.

2.2 Software Overview

2.2.1 Directory Tree

/

CMakeLists.txtMain CMake list file, sets up build op-
tions and includes all the subfolders.

emission-libSource code of NiftyRec Emission
Tomography core libraries. All of
NiftyRec libraries for Emission Tomog-
raphy are here except for the mex ex-
tensions and the GPU accelerated rou-
tines, which are in emission-lib gpu.

et.cpp.txt Implements the Nifti Interface. The
subset of the NiftyRec functions de-
fined here allows to use all the function-
alities of NiftyRec. The C Array In-
terface only imports this library, which
binds to all other libraries of NiftyRec,
including the libraries for GPU acceler-
ation.

et array interface.cpp Implements the C Array Interface.
emission-lib gpuRoutines for GPU acceleration. They

are functinoally identical to some of
the functions in emission-lib but these
make use of the NVidia CUDA Run-
time interface for GPU acceleration.

17

transmission-libSource code of NiftyRec Transmission
Tomography core libraries. All of
NiftyRec libraries for Transmission To-
mography are here except for the mex
extensions and the GPU accelerated
routines, which are in transmission-
lib gpu.

transmission-lib gpuRoutines for GPU acceleration. They
are functinoally identical to some of the
functions in transmission-lib but these
make use of the NVidia CUDA Run-
time interface for GPU acceleration.

MatlabContains the source code for the Mat-
lab extensions. Each Matlab extension
function has a .cpp and a .h file. The
Matlab Toolbox is made up of mex ex-
tensions, m files and documentation.
Subfolders of Matlab contain the m files
and the Documentation.

mm files for the Matlab Toolbox.
docDocumentation for the Matlab Tool-

box.
NiftyRecPython extension module.
appsStandalone applications based on

NiftyRec
niftyrec guiGTK based GUI for NiftyRec

docNiftyRec documentation.
niftiNiftilib source code. Defines Nifti data

structures and routines for IO of Nifti
files.

miscMiscellaneous functions.

2.2.2 Programming Guidelines

Development of NiftyRec is inspired to the agile programmiong philosophy,
Working software is the principal measure of progress, face-to-face conver-
sation between the developers has been the main form of communication.
There was a continuous attention to good design and technical excellence,
while always opting for simplicity. The programmers tried to make the code
as open as they could by adopting meaningful names, following consistent
naming conventions and avoiding criptic bits of code. As in Unix Program-
ming, data dominates, the code is based on the data structures defined in the

18

niftilic http://niftilib.sourceforge.net/ library and given this choice
the algorithms are almost self-evident.

2.3 Programming Interfaces

2.3.1 Nifti Interface

All functions in NiftyRec take as parameters pointers to nifti image data
structures, defined in niftilib. Developing NiftyRec is simple, one needs to
understand what are the fields in the nifti image structure. These structures
are well suited to medical images and image in general (in a broad sense,
activity, projections, gradients, attenuation image, point spread function, ..)
as all the parameters of interest for the image are stored in the structure,
allowing one to pass the image and all the information relevant to that image,
by one pointer. NiftyRec makes heavy use of nifti image structures, most
of the functions take as parameters pointers to nifti image structures which
they can then read and modify.

2.3.2 C Array Interface

While NiftyRec internally uses the niftilib data structures in order to simplify
the handling of images and parameters, it provides a programming interface
entirely based on C arrays in order to simplify embedding of NiftyRec into
third party applications. The programmer who wants to make use of NiftyRec
but does not intend to extend its functinoality, shouldn’t be required to learn
how to use the niftilib data structures (though they are quite simple). The
C Array Interface is based entirely on C arrays and exposes a subset of the
functions of NiftyRec that allows one to use all its functionalities.

The source files et-lib/ et array interface.cpp and et-lib/ et array interface.h
implement the C Array Interface. Each of the functions defined here assem-
bles the required niftilib structures, calls a function from the Nifti Interface,

19

then destroys the structures that it created.

Note that Matlab and Python bindings are built on top of the C Array
Interface, as pictured in figure 2.3.

2.3.3 Matlab

The Matlab Toolbox for NiftyRec is based on mex Matlab extensions. Each
of the functions of the NiftyRec C Array Interface has a corresponding mex
source file that defines its interface to Matlab. The folder et-mex contains
the source code of the mex extensions. Subfolders of et-mex contain addi-
tional Matlab m files and the Matlab inline documentation and manual for
NiftyRec. The mex interface is a thin layer on top of the C Array Interface.
Each function correponds to one .cpp source file and a .h header in et-mex.
Edit one of the mex sources in et-mex to understand how to create a mex
extension for a new function in the C Array Interface.

Note that often mex Matlab extensions are compiled within Matlab by run-
ning the mex .. command with the source files as parameters. This creates
a mex file, which Matlab recognises as an extension. The mex file is actually
a shared library (where the extension of the file is renamed); Matlab uses an
external compiler to generate the mex and it sets up automatically all the op-
tions for the compiler, including where it can find the Matlab libraries (which
the mex file builds against). NiftyRec uses the compiler directly to build the
mex. A macro in the CMake list file (et-mex/CMakeLists.txt) sets the param-
eters for the compiler and edits the extension of the output dynamic libraries.
This allows us to automatically compile the Matlab extensions along with
the NiftyRec source.

2.3.4 Python

Python bindings are built on top of the C Array Interface and are based
on Python Ctypes. Ctypes is a Python module that allows one to interface
dynamic libraries written in C and execute functions that make use of basic
C types such as int, float, double, char, arrays and pointers to the former
types. There are a few advantages of Ctypes over other methods to interface
C code with Python, one being simplicity of use and another being that the
interface is independent from the version of Python and from the compiler.
Building a Python extension module against the Python libraries defined in
Python.h requires the same compiler that was used to compile the Python
libraries; this is generally not a problem under Linux, but it can be a problem

20

under Windows, where Python is typically installed with the self-extracting
installer which adds to the system a copy of the libraries that was compiled
with a specific compiler, which typically is a commercial compiler. The same
problem applies to all the automatic wrappers that create code to be built
againsts Python libraries. Ctypes however is a good solution as long as the
number of functions to be wrapped is small and as long as is suffices (or is
not over complicated) to use only basic C types, which is the case of NiftyRec.

If you edit et array interface.cpp you will notice that all the functions that
are exposed to Python are defined with the extern ”C” syntax in order to
instruct the compiler to treat them as C functions. This solves the prob-
lem of using C++ code through Ctypes because of mangling of the function
names for overclassing: C++ compilers modify the function names in order
to encode the types of the parameters for that particular implementation of
the function, though the compiler changes the name in a predictable manner,
this is not standard across different compilers.

Editing NiftyRec.py under the NiftyRec folder will clarify how the Ctypes
based Python extension module works. NiftyRec.py tells Ctypes to load the
dynamic library lib et array interface and specifies the types of the parame-
ters for the functions that NiftyRec.py interfaces (which are all the functions
that the C array interface exposes). Then NiftyRec.py exposes to the Python
programmer a number of functions that take numpy arrays as parameters and
return objects of the same class; numpy array objects expose the Python ar-
ray interface, which allows one to obtain, within the Python environment, a
pointer to the data buffer that contains the actual data of the array object;
NiftyRec.py extracts the pointer and instructs Ctypes to pass it over to the
functions in lib et array interface.
All the functions in the C Array Interface are atomic in that they create the
data structures that they need and then they free them before they return;
when they return data they always write the data into a memory section
that was preallocated (they take pointers as parameters) as opposed to al-
locating the data structure for the result and returning a pointer to that
structure (which would require the use of double pointers). This means that
it is never necessary to deallocate resources, except for the resources that
were allocated before the function call to the C Array Interface. This simple
design criterium, which is possible because of the simplicity of the interface,
makes the garbage collector of Python responsible for the deallocation of all
the resources: numpy arrays for the results are created in NiftyRec.py, the
pointer to the C array that is contained within the object is passed to some
function in the NiftyRec C Array Interface which writes data into it, then the

21

array is deallocated by the garbage collector when the object is deleted; the
functions in NiftyRec return the object to some calling function and so on,
until at some point the object has no references because some function quits
and does not return the object (or embeds it as a member of some other ob-
ject), in which case the garbage collector deallocates all the resources related
to that object, including the underlying C array which contained the data.

22

Chapter 3

User’s Guide

3.1 Getting Started

3.1.1 Install Packaged Releases

The packaged releases for some of the most common hardware platforms can
be downloaded from the NiftyRec website. These will install on your system
the precompiled NiftyRec libraries, binaries, documentation the Matlab and
Python Toolboxes and the development headers to use the C API. If a pack-
aged release is not available for your system, then you need to build NiftyRec
from source with the CMake build system, following the instructions in the
Developer’s Guide. This will also optionally install NiftyRec in your system
and create a packaged release for distribution of NiftyRec to machines with
the same CPU architecture and compatible operating system.

Windows

Double click on the self-extracting installer and follow instructions on screen.
By default NiftyRec is installed under C:/ProgramFiles/NiftyRec/. This
folder contains subfolders with the libraries, binaries, header files for de-
velopment (see Developer’s Guide) and the Matlab and Python extensions.

Linux Debian

Double click on .deb installer and follow instructions on screen. The deb
package will install libraries, binaries and headers for development (see De-
veloper’s Guide) under /usr/local/lib, /usr/local/bin and /usr/local/include;
the Python module is installed amongst the site-packages and will be found
automatically by Python; the Matlab Toolbox is installed in /usr/local/niftyrec/-

23

matlab and the documentation in /usr/local/niftyrec/doc.

3.2 Matlab Toolbox

Launch Matlab. Add path to NiftyRec Toolbox.

>> addpath /usr/local/niftyrec/matlab

Or add permanently by clicking on File-¿Add path. The path NiftyRec Tool-
box is set as an option in CMake. It defaults to ’/usr/local/niftyrec/matlab’
in Linux and MAC OS and in Windows it’s in the NiftyRec install directory,
which defaults to C:/ProgramFiles/NiftyRec Open Matlab help and click on
Emission Tomography Toolbox to visualize the documentation of NiftyRec
Toolbox.

3.2.1 Transmission Tomography

In order to use NiftyRec-TT within Matlab, launch Matlab and add path to
the NiftyRec-TT matlab folder:

>> addpath /usr/local/niftyrec/matlab

Or add permanently by clicking on File-¿Add path. The path NiftyRec-TT
matlab is set as an option in CMake. It defaults to ’/usr/local/matlab’ in
Linux and MAC OS and in Windows it’s in the NiftyRec-TT install directory,
which defaults to C:/ProgramFiles/NiftyRec. The Matlab interface consists
on a mex file that wraps the projection function in the C API. In order to
hide the latency due to memory transfers, the function performs multiple
projections in one call and the parameters are vectors. See the example
below.

Example

N pro j e c t i on s = 200 ;
a t t enuat ion = ones (256 , 256 , 256) ;
source = zeros (N pro j ec t i ons , 3) ;
s c a l e = ones (N pro j ec t i ons , 2) ;
t rans = zeros (N pro j ec t i ons , 3) ;
r o t = zeros (N pro j ec t i ons , 3) ;
source (: , 2)= linspace (−1 ,1 , N pro j e c t i on s) ;
p = t t p r o j e c t r ay mex (attenuat ion , [5 1 2 , 5 1 2] , source , s ca l e , trans , ro t) ;
for i = 1 : N pro j e c t i on s

24

imagesc (p (: , : , i)) ; colormap gray ; pause (0 . 1)
end

3.3 Python Extension Module

The NiftyRec Python module is installed amongst the site-packages by the
binary installers and by ’make install’. Open the Python interpreter and
import NiftyRec

>>> from NiftyRec import NiftyRec

3.4 C API

In order to build against NiftyRec, include in your project the headers folder,
installed under /usr/local/headers or C:/ProgramFiles/NiftyRec/headers (typ-
ically) and instruct the linker to link against the NiftyRec libraries installed
under /usr/local/headers or C:/ProgramFiles/NiftyRec/lib.

3.4.1 Transmission Tomography

The C API currently implements one function for projection with the ray-
cast algorithm. In order to hide the latency due to memory transfers, the
function performs multiple projections in one call and the parameters are
arrays:

typedef unsigned short VolumeType ;

struct f l o a t 2
{

f loat x , y ;
} ;
typedef struct f l o a t 2 f l o a t 2 ;

struct f l o a t 3
{

f loat x , y , z ;
} ;
typedef struct f l o a t 3 f l o a t 3 ;

struct i n t 3
{

int x , y , z ;
} ;
typedef struct i n t 3 i n t 3 ;

struct u i n t 3

25

{
u in t x , y , z ;

} ;
typedef struct u i n t 3 u i n t 3 ;

struct u i n t 2
{

u in t w, h ;
} ;
typedef struct u i n t 2 u i n t 2 ;

int t t p r o j e c t r a y a r r a y (VolumeType h volume [] , u i n t 3 volume voxels ,
f loat ou t p r o j e c t i o n s [] , u i n t n p ro j e c t i on s ,
f l o a t 2 d e t e c t o r s c a l e [] , f l o a t 3 d e t e c t o r t r a n s l [] ,
f l o a t 3 d e t e c t o r r o t a t [] , u i n t 2 d e t e c t o r p i x e l s ,
f l o a t 3 source pos []) ;

The function takes as input a 3D unsigned integer attenuation map, stored
as a monolithic array of size (Nx × Ny × Nz) and fills the float array of
size (ImageW × ImageH ×Nprojections) (Nprojections needs to be spec-
ified as a parameter). The parameter detectorpixels sets the number of
pixels of the detector: one ray is cast for each detector pixel (ImageW =
detectorpixels[0], ImageH = detectorpixels[1]).
All the remaining parameters represent the 3D position of the detector,
its size, and the position of the source. Each parameter is an array of
length Nprojections, where each element i of the array represents the pa-
rameter for projection i. Parameters are detectorscale, detectortranslation,
detectorrotation, detectorpixels, sourceposition.

detectorscale scales the detector in X and Y (see figure 3.1), if it is set (1, 1),
the detector is of size (2,2), (green plane in figure 3.1).

detectortranslation is the translation of the detector. If it is set to (0, 0, 0),
the detector is centered in (0, 0,−1).
detectorrotation is the rotation of the detector with respect of axis (X, Y, Z).
sourceposition is the position 3D of the point source.

Figure 3.1:

26

Bibliography

[1] L.A. Shepp and Y. Vardi. Maximum Likelihood Reconstruction
for Emission Tomography. IEEE Transactions on Medical Imaging,
1(2):113–22, 1982.

[2] J. Qi and R.M. Leahy. Iterative reconstruction techniques in emission
computed tomography. Physics in Medicine and Biology, 51(15):R541–
R578, 2006.

[3] S. Borman. The expectation maximization algorithm: A short tutorial.
Unpublished paper available at http://www.seanborman.com /publica-
tions. Technical report, 2004.

[4] C.A. Johnson, J. Seidel, Carson R.E., Gandler W.R., Green M.V.,
E. Daube-Witherspoon, and A. Sofer. Evaluation of 3D reconstruc-
tion algorithms for a small animal PER camera. IEEE Transactions on
Nuclear Science, 44(3):1303–1308, Jun 1997.

[5] T. Frese, N.C. Rouze, C.A. Bouman, K. Sauer, and G.D. Hutchins.
Quantitative comparison of FBP, EM, and Bayesian reconstruction al-
gorithms for the IndyPET scanner. IEEE Transactions on Medical Imag-
ing, 22(2):258–276, Feb 2003.

[6] G.L Zeng and G.T. Gullberg. Frequency Domain Implementation of
the Three-Dimensional Geometric Point Response Correction in SPECT
Imaging. IEEE Transactions on Nuclear Science, 39(5):1444–1454, 1992.

[7] A. Rahmim and H. Zaidi. PET versus SPECT: strengths, limita-
tions and challenges. Nuclear Medicine Communications, 29(3):193–207,
2008.

[8] R.L. Siddon. Fast calculation of the exact radiological path for a three-
dimensional CT array. Medical Physics, 12(2):252–255, 1985.

27

[9] S. Cho, Q. Li, S. Ahn, B. Bai, and R.M. Leahy. Iterative Image Re-
construction Using Inverse Fourier Rebinning for Fully 3-D PET. IEEE
Transactions on Medical Imaging, 26:745–756, 2007.

[10] F. Xu. Fast Implementation of Iterative Reconstruction with Exact Ray-
Driven Projector on GPUs. Tsinghua Science & Technology, 05(20):30–
35, 2009.

[11] H. Cramer. Mathematical Methods of Statistics. Princeton University
Press, 1957.

[12] J.E. Stone, J.C. Phillips, P.L. Freddolino, D.J. Hardy, L.G. Trabuco, and
K. Schulten. Accelerating molecular modeling applications with graphics
processors. Journal of Computational Chemistry, 28:2618–2640, 2007.

[13] I. Ufimtsev and T. Martinez. Quantum chemistry on grapical process-
ing units. 1. Strategies for two-electron integral evaluation. Journal of
Chemical Theory and Computation, 4(2):222–231, 2008.

[14] S. Pedemonte, A. Gola, A. Abba, and C. Fiorini. Optimum real-time
reconstruction of gamma events for high resolution Anger camera. In
IEEE Nuclear Science Symposium Conference Record, pages 3388–3394,
November 2009.

[15] NVidia CUDA Programming Guide, version 2.3, Jan 2008.

[16] H.M. Hudson and Larkin R.S. Accelerated Image Reconstruction Using
Ordered Subsets of Projection Data. IEEE Transactions on Medical
Imaging, 13(4), 1994.

[17] P.J. Green. Bayesian reconstructions from emission tomography data
using a modified EM algorithm. IEEE Transactions on Medical Imaging,
9(1):84–93, 1990.

[18] D.J. Kadrmas, Frey E.C., Karimi S.S., and Tsui B.M.W. Fast Imple-
mentations of Reconstruction-Based Scatter Compensation in Fully 3D
SPECT Image Reconstruction. Phys Med Biol., 43(4):857–873, 1998.

28

